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Abstract

We introduce the class of skew-circulantlattice rules. These are s-dimensional
lattice rules that may be generated by the rows of an s X s skew-circulant
matrix. (This is a minor variant of the familiar circulant matrix.) We
present briefly some of the underlying theory of these matrices and rules.
We are particularly interested in finding rules of specified trigonometric de-
gree d. We describe some of the results of computer-based searches for optimal
four-dimensional skew-circulant rules. Besides determining optimal rules for
d =d+1 <47, we have constructed an infinite sequence of rules QA(47 9) that
has a limit rho index of 27/34 ~ 0.79. This index is an efficiency measure,

which cannot exceed 1, and is inversely proportional to the abscissa count.
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1 Introduction

This paper is a contribution to the theory of multidimensional cubature over [0, 1]*
of specified trigonometric degree d. This work was initiated mainly by Russian
authors (for example, [Mys88] and [Nos91]) and has been significantly developed in-
ternationally. The extensive introduction of lattice rules (see, for example, [S1J094])
into this area has broadened the theory. A recent, somewhat detailed, account
of some of this work appears in [CoLy01]. Significant computing power (see, for
example, [S¢My01]) has been devoted to uncovering new rules.

In this paper, we introduce skew-circulant lattice rules. We seek optimal s-
dimensional rules of specified enhanced degree ¢ (which is defined as § := d+1). We
describe a moderate search by means of computer for such rules. New rules in four
and three dimensions are presented in Sections 5 and 7.

1.1 Background: Available Optimal Rules

For a handful of small values of dimension s and enhanced degree 4, optimal rules
have been known for several years. In particular, optimal rules for all dimensions
with 0<4 are known. For s>4 no other optimal rules are known. For s = 3 an
optimal rule for all § that are multiples of 6 is also available, and for s = 2 and
trivially for s = 1 optimal rules are known for all 4.

It appears that, for each of these (s,d) values, one or more of the optimal
rules is a lattice rule. All of the known optimal lattice rules with § < 6 were
discovered or could readily have been discovered by a very limited search (among
rank-1 lattice rules only), the optimality being recognized when the abscissa count
N coincided with a theoretically established minimum Nyg. The others (i.e.,
(s,8) = (3,6k);k > 1) are simply k-copies of the one with § = 6. To show that
these copy rules are optimal requires a simple application of the deeper critical
lattice theory of Minkowski [Min11].

During the past ten years, the situation with respect to known optimal rules has
not changed significantly. Attention has shifted to treating well defined subsets of
lattice rules and finding, either analytically or by major computer search, optimal
rules with respect to this subset. Many apparently excellent lattice rules have been
discovered in this way; whether any of these is optimal is not known.



1.2 Lattice Rules and Their Trigonometric Degree

An s-dimensional lattice, A, is the set of points generated by all linear integer
combinations of s linearly independent vectors a;, 7 =1,2,...,s. These vectors are
known collectively as a set of generators of A, and a matrix A whose rows comprise
these generators in any order is known as a generator matrix for A. The unit lattice,
Ao, also known as Z(), is the special lattice comprising all points, all of whose
components are integers. It follows that h € A < h = XA for some A € Ay.

The generator matrix of a lattice is not unique. However, all generator matrices
of a particular lattice are related in accordance with the following theorem.

Theorem 1.1 A and A’ are generator matrices of the same lattice if and only if
A=UA" where Uis a unimodular matriz.!

An integration lattice A is a lattice that satisfies A D Ag. An s-dimensional lattice
rule Q(A) is simply an integration rule that applies the same weight ((A))™! to each
of the v(A) points of an s-dimensional integration lattice A that lie in [0,1)®. Thus
it integrates a constant function correctly, making it of enhanced degree §(Q)) > 1.

Associated with any lattice A, generated by A, is its dual lattice, AL, generated
by the matrix (A71)T. A consequence of the fact that for an integration lattice
A D Ag is that Ag D AL, which implies that (A=) is an integer matrix. The dual
lattice plays an important role in the theory of lattice rules because it can be used to
specify an error expansion of the quadrature rule in terms of the Fourier coefficients,
fh, of the integrand function as follows:

Equ/f =QWNf=1f=3 fu (1)

heal
h+#0

Here I is the integration operator over [0,1)°, and fo = [f. For a lattice rule to
integrate exactly all polynomials of trigonometric degree d, the right-hand side of
this equation must vanish whenever f is such a polynomial. This requirement leads
to a characterization of the trigonometric degree of a lattice rule? as follows.

Definition 1.2 A lattice rule Q(A) is of enhanced trigonometric degree & if and
only if Vh € AL, other than h = 0 :

[ fli=[h |+ ho[+...+ [ hs |> 0

LA unimodular matrix U is an integer matrix for which det(U/) = 1. The inverse of a unimod-
ular matrix is also a unimodular matrix.

?The statement that an integer lattice At is of a specified trigonometric degree d should be
taken to mean that the lattice rule Q(A) is of degree d. The enhanced degree § is d + 1.



Definition 1.3 The lattice rule Q(A) in Definition 1.2 is of strict enhanced trigono-
metric degree & if and only if it is not also of enhanced trigonomelric degree 6 + 1.

In view of this definition the strict enhanced degree can be expressed as

QA)) = i hll;. 2
Q) =, min_ Il (2)
A basic cell of any lattice is the smallest nonzero volume enclosed by any s-dimensional
simplex whose vertices are s 4+ 1 distinct lattice points. one may show that the ab-
scissa count of Q(A), denoted by v(Q) or v(A), coincides with s!V, where V' is the
s-volume of the basic cell of At. (See, for example, [Lyn89].) Thus:

v(Q(A)) = s!V = | det B = | det A|™!, (3)

where B is (A™!)T or any other generator matrix of AL.

Thus, two algebraic properties of the lattice rule are geometrical properties of the
associated dual lattice. The enhanced degree ¢ is the shortest L; distance between
any two points of the lattice, while the abscissa count is a known multiple of the
volume of its basic cell.

1.3 K-Optimal Rules

These two geometric properties of the lattice lend plausibility to the idea that the
more efficient lattice rules might have dual lattices generated by points h for which
||h||1 = §. (See [CoLy01].) The population K (3,d) comprises integer lattices gener-
ated by 3 points, each located on a different pair of opposite faces of the octahedron
||x||]1 = 6. The population K(s,d) is an exact s-dimensional generalization of this.
(The terms facet-pair and s-crosspolytope may be used in this context.) We refer to
the optimal rules corresponding to these lattices as K(s,d)-optimal.

This search was extremely expensive, so expensive indeed that for higher values
of & we were obliged to treat only subcategories of K (s,d). This work is specified in
detail in [CoLy01]. (A few of the abscissa counts (denoted by Nko) obtained there
are reproduced in Table 2 and Figure 1.) As we shall see in the next section, the skew-
circulant rules form a subset of the K(s,d)-rules. It follows that the abscissa count
for the optimal skew-circulant rules cannot be less than, and is generally greater
than, the corresponding count for A-optimal rules. However, the corresponding
search, described in section 4, is orders of magnitude shorter.

A detailed examination of these K-optimal rules revealed that some of them con-
form to a recognizable simple structure. Specifically, those listed for § = 1,2,6,11,13,
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and 19 (or one of their symmetric equivalents) could be generated by a skew-circulant
matrix. This fact led us to define and investigate skew-circulant lattice rules (Sec-
tions 2 and 3).

1.4 Results for Skew-circulant Rules

Results of a computer search for optimal skew-circulant rules in four (and in three)
dimensions are presented in Section 5 (and in Section 7). We noticed that almost all
the optimal skew-circulant rules conform to a particular pattern; consequently, we
were able to define for s = 4 and for all positive integers § a particular skew-circulant
rule denoted by Q(4, ). This is specified in detail in Section 5. There we show the
following:

1. For all § this rule is of enhanced degree 4.

2. For many values of § including all those in the range [23.47], Q(4,5) is an
optimal skew-circulant rule of enhanced degree 4.

3. There are, however, sequences of values of 4 for which Q(4, d) is not an optimal
skew-circulant rule of degree 4.

Our proof of 1., given in Section 5, is cumbersome, in that it requires a large
but finite number of repetitive calculations. Statement 2. comprises a finite set
of substatements, each of which may be verified by a moderate computer search.
Statement 3. is established in Section 6 by using an argument based on the rho
index of a rule.

JFrom the point of view of matrix theory, the skew-circulant matrix is a some-
what unexciting variant of the circulant matrix. For many values of § however, all
four-dimensional lattice rules generated by a circulant matrix require more abscissas
than does the corresponding skew-circulant rule Q(4, ). In a search up to § = 47,
only § =5 and § = 9 appeared as exceptions.

2 Skew-circulant Matrices and Lattices

In this section, we introduce skew-circulant matrices [Dav94] and then define and
discuss skew-circulant lattices.

2.1 Skew-circulant Matrices

The theory in this subsection is not new. It is a straightforward modification of
the corresponding theory for the classical circulant matrix. It is presented here to



establish the notation.
An s x s skew-circulant matrix is one of the form

(273} aq a9 |
—ds_1 (273} aq v Qg2
C(a) = Clag,ayy. .. 05-1) := : : : : . (4)
—d?2 —d3 —a4 ... aq
—da1 —dy —da3 ... Qo
Here, and in the sequel, we use a to stand for (ag, ay, ..., as_1).

We denote by C®) the class of s x s skew-circulant matrices. Their properties
are readily derived in terms of our principal basic skew-circulant matrix

0 10 ... 0
0 01 ... 0
T=0C0,1,0,...,0)=| : = : . (5)
0 00 1
-1 0 0 0
It follows immediately that
0 0 1 0
0 0 1 0
T =C(0,...,0,1,0,...,0) = 1 0 0 HE (6)
0 -1 0 0 0

where the unit is the (¢ + 1)th argument of C.
The following properties of basic skew-circulant matrices are easily established
by applying the definition:®

e det(7T) = (—1)*; T is unimodular.
o Tits = 77

e TTT = I; T is orthogonal.

3 A superscript T' denotes the matrix transpose. Here, (T%)7 denotes the transpose of the matrix
T,



° (Tz)T — —Ts_i.
Note that
Clag, ay,...,a,_1) :ZaiTi (7)
=0
and that the (j 4+ 1)th row of C'(a) is simply a 77, where as usual a is the first row
of C'(a).

Applying these basic properties, one can easily prove a number of interesting
properties for the class of skew-circulant matrices (denoted C(®)).

o If A= C(ao,al, ..oyts_1) and B are in C'¥, then

(i) AB € c)

(ii) AB BA

(iii) A" = (Clo, —Q5_1,...,—ay),
(iv) (A~H)T ¢ c)

2.2 Skew-circulant Lattices

In this paper we shall use the terminology A(B) to denote the s-dimensional lattice
generated by the s rows of an s x s generator matrix B.

Definition 2.1 A skew-circulant lattice is one that can be generated by a skew-
circulant matrix.

This specification of a skew-circulant lattice A in terms of a skew-circulant generator
matrix is not unique.

Theorem 2.2 Let A be a skew-circulant matriz. Then

AAT?) = A(T7A) = A(A). (8)

Proof. Since both A and 77 are skew-circulant matrices, they commute, and so the
arguments in the first two members of (8) are identical. Since 77 is a unimodular
matrix, Theorem 1.1 asserts that the lattices in the second and third members of
(8) coincide. O

Theorem 2.2 provides 2s generally distinct skew-circulant matrices, namely, AT?, j =
0,1,2,...,2s — 1, each of which generates the same skew-circulant lattice.
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The reader will notice that the lattice A(C(ag,a1,...,as—1)) includes all the
points appearing as rows of C(ag,ai,...,as_1) together with their negatives. Thus
this lattice includes the set of 2s points a 77,5 = 0,1,...,2s — 1. This is a special
case of the following.

Definition 2.3 A set of 2s points of the form x 17, 7 =0,1,...,2s5 — 1
a skew-circulant set of points related to x.

, is termed

Theorem 2.4 When x is any element of a skew-circulant lattice A, all skew-circulant
points related to x are also elements of A.

Proof. x € A(A) implies that there exists A such that x = AA. It follows that
xT7 = MAT’, which is the condition that xT77 € A(ATY). In view of Theorem 2.2
A(AT?) = A(A), which establishes Theorem 2.4. O

The dual At of any lattice A(B) is the lattice generated by (B~1)T. In view of the
last result of the preceding section, At is a skew-circulant lattice whenever A is one.

The reader should bear in mind that a matrix that is not skew-circulant may, on
occasion, generate a skew-circulant lattice. Let B be any integer matrix and A(B)
the lattice it generates. It follows that A(B) is an skew-circulant lattice if and only
if there exists a unimodular matrix U such that U B may be expanded in the form

s—1
UB=> aT" (9)
=0

3 Lattices and Their Equivalence Classes

In constructing a search over any population, there is usually a major cost reduction
if the natural symmetry of the population can be exploited in some way. A symmetric
copy of a lattice is another lattice obtained from the first by any sequence of those
affine transformations that take the unit lattice into itself.

Lattices that are symmetric copies of each other are said to belong to the same
equivalence class. They share many of the same characteristics. In the present
context the most important features appear to be that they obviously share the
same trigonometric degree and order. Thus, in any search for optimal skew-circulant
lattice rules there is no need in principle to consider more than one member of each
equivalence class.

In terms of generator matrices, symmetric copies of a lattice may be created by
postmultiplying by permutation matrices and sign change matrices.



In the rest of this section, the theorems will be stated in an s-dimensional context.
However, much of the discussion will be presented in a four-dimensional context.

Let G; be an element of the group G of 384 affine transformation that takes
the hypercube [0,1]* into itself. Let G; be a standard® matrix representation of
G;. (We abbreviate this to (; € G.) Let A be a generator matrix of a lattice
A(A). Then the set of lattices in the equivalence class that contains A comprises all
lattices A(AG;), © = 1,2,...,384. These lattices are not distinct; when G; = —Gj,
the lattices A(AG;) and A(AG}) coincide. However, 192 elements of this set may
be distinct. On the other hand, the class may have many fewer elements. In the
extreme case, when A(A) is a multiple of the unit lattice, then all members of this
set coincide, and the equivalence class contains only one member.

Definition 3.1 A(A) and A(A) are members of the same equivalence class, written
A(A) = A(A)

if and only if there exists a unimodular matrizc U and a permutation matric G € G

such that A = UAG.

We note that the elements 77, 5 = 0,1,...,7, introduced in (5) and (6) are
themselves matrix representations Gy of elements of the group G. These elements
form a subgroup of order 8. We introduce the set of 48 right cosets of this subgroup;
these are

{TiG,: 7=0,1,....7:} k=1,2,....,48. (10)

It is known from elementary group theory that Gy; & =1,2,...,48 may be chosen
in such a way that these cosets are disjoint and the union of their members comprise
the totality of the members of G.

Theorem 3.2 When an s-dimensional equivalence class contains a skew-circulant
lattice, A, the class can contain no more than 257! (s — 1)! distinct lattices.

Proof. Let A be a skew-circulant matrix that generates the skew-circulant lattice
A and G € G. Since both A and 77 are skew-circulant matrices, they commute; it
follows that

AATIG) = A(T7AG) = A(AG) j=0,1,...,7. (11)

4For any matrix A, the matrix AG; may be constructed by applying G; to the columns of A.




Thus, when ' and " are members of the same coset specified in (10), the lattices
A(AG") and A(AG") coincide. Since there are at most only 48 distinct cosets there
are at most only 48 distinct lattices in this equivalence class. a

By hypothesis one of these is a skew-circulant lattice. The following theorems
show that, when s is even, there are three more in general. In four dimensions, we
have not encountered any equivalence class having more than four distinct skew-
circulant lattices. (No theorem to this effect is known to us.)

The next two theorems depend on a suitable choice of a unimodular matrix U
and of ¢ € G for use in the relation

AUAG) = A(A). (12)

Theorem 3.3 Lel A = Cag, ai,...,a.,_) and A = Cas_1yto_gy- - a0). Then
A(A) = A(A).

Proof. Define

00 ... 01
00 ... 10
P=|:: S (13)
01 ... 00
1 0 ... 00

It is readily confirmed that PT7P = —T*77; since A = Z;;é a;T7, it follows that

s—1 s—1
—T7'PAP = —T7'Y a;PT'P =T a;T°77 = Clas-1,a5-2,...,a0). (14)

i=0 i=0

Setting U = —T7'P and G = P in (12) establishes the theorem. O

Theorem 3.4 For even s, A(A) = A(A_), where A = C(ag,ay,...,as_1) and A_ =

C(ao, —ay1,03, —A3, ..., —Cls_l).
Proof. Let

S = diag(1,—1,1,—1,...,1,—1). (15)
It is readily verified that SAS = A_. Setting U = G = S in (12) establishes the

theorem.
O
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4 A Search

Many extensive searches for optimal lattice rules are described in the literature.
Beside these, our simple search for efficient skew-circulant lattice rules in three and
four dimensions appears to be almost trivial. This is because the population C®) of
skew-circulant lattices is relatively small.’

Definition 4.1 The lattice A is an C-optimal lattice of (strict) enhanced degree
§ when any other C®) lattice A' of (strict) enhanced degree § satisfies v(A') > v(A).

To find an C®)- optimal lattice of strict enhanced degree 8, it is sufficient to test
every integer lattice A(B) generated by B = C(bg, by, ...,bs_1) having

Since simple analytical formulas for det B exist, the abscissa count
v(B) = |det B] (17

)
is significantly easier to calculate than the enhanced degree §( B). We calculate v( B)
for each lattice of this set. We retain the first lattice encountered for which §(B) = )
as the first entry on our provisional list of optimal candidates. Subsequently, only
when a new abscissa count v(B) is found to be less than or equal to the current
provisional count is it necessary to calculate §( B). If this coincides with our target
enhanced degree 5, we retain this lattice on our provisional list. If the new abscissa
count is less than the current provisional count, all other members of this list are
discarded. At the completion of such a search, a complete list of C*)-optimal lattices
remains.

Short though this search appears to be, it turns out that in four dimensions the
population (16) can be curtailed. One needs to include only those A(B) for which
all components of b are nonnegative (that is, b is in the principal four-dimensional
quadrant). Moreover, in view of Theorem 3.2, we may further restrict the search
to omit b when b3 < by and also when both b3 = by and b, < b;. In view of
Theorem 2.2, the skew-circulant lattice generated by b7 coincides with the lattice
generated by b. And, according to Theorem 3.4, the lattice generated by bS' is
symmetrically equivalent to the one generated by b. (5 is defined in (15) above.)
Merely by checking these sign patterns, one can verify that in four dimensions the
sixteen points bT7 and b7 S lie respectively in each of the sixteen distinct octants.

5Depending on context, C(*) may refer to the set of skew-circulant matrices, the set of skew-
circulant lattices, or the set of skew-circulant lattice rules.
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The corresponding situation in three dimensions and in more than four dimen-
sions is more complicated and is not discussed here.

A

5 The Sequence of Lattice Rules Q(4,0)

In dimension s = 4 for all § < 47 we have carried out a search for all the optimal
four-dimensional skew-circulant rules of enhanced degree 4.

As mentioned in Section 1, detailed examination of these results indicates that,
for all §€[23,47] the lattice rule Q(4, 9) specified below is an optimal skew-circulant
rule of strict enhanced degree 4, and all other optimal skew-circulant rules of the
same strict degree are in the same equivalence class as this one. Q may be specified

as follows.

Definition 5.1 Let 6 = 6k+r, where r € [0,5]. Define 6(4,5) as indicated in Table
1. Then QAZ.S the lattice rule Q(A), where A is the dual of the lattice At generated
by B =C(b).

In the lower half of Table 1 we provide the components of a skew-circulant integer
matrix

A = Clao, dy, dy, @s),
which is a scaled version of A, a generator matrix of A. These elements are all cubic
polynomials in k. Specifically,

A= (BT)y"'= A/N.
Besides being an optimal skew-circulant rule for all §€[23,47], the rule Q(4,5) is
also an optimal skew-circulant rule for all values of d€[1,22] with the following
exceptions. For & = 4,10,16,22 the rules generated in the same way, starting with
b(4,6k +4) = (0,3k + 2,2k + 1,k + 1), are optimal.

For several randomly chosen values of §€[48,120] the same search was carried
out. No counterexample to the (incorrect) conjecture that Q(4,5) is optimal for
all § > 23 was discovered in this way. Later, however, we show theoretically (see
Theorem 6.2) that such a conjecture is false.

The rest of this section is devoted to establishing Theorem 5.3; in the proof we
shall employ the following well-known inequality.

Lemma 5.2 Let A be the generator matriz of an integration lattice A, and let B =

(AT)=L. Let h = AB with A\ € Ag. Then
[[af[s > [[A[[ /1] Al
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Table 1: Parameters for specification of Q(4, §) for positive integer 4.

A

A

r b(4, 6k + r) ) N

0] (0,3k, 2k, k) 6k 68k*

1] (1,3k+ 1,2k, k—1) 6k 4+ 1 68k* +48k% + 28k + 8k + 1

21 (0,3k+ 1,2k +1,k) 6k +2 68k* + 88k% 4+ 52k% + 16k + 2

31 (1,3k4+2,2k+ 1,k —1) 6k +3 68k + 136k% + 136k + 68k + 17
41 (0,3k +2,2k + 2, k) 6k +4 63k* + 176k% + 208k% + 128k + 32
5 (1, 3k 43,2k +1, k) 6k +5 68k + 2323 + 312k% + 196k + 49
0 | 16k° 26k° 4k 2k3

1| 16k +6k%+4k+1 26k% + 14k + Tk + 1 4k° + 2k 283 + 6k2 +3k+1

2 | 16k% +20k2 + 8k +1 26k5 + 24k2 + 8k + 1 4k —2k2 — 4k —1 2k% + 10k2 + 6k + 1
3| 16k 4+ 26k* + 18k + 5  26k> + 38k%> + 25k + 6 4k® — 2k% — 4k — 3 2k + 16k%2 + 15k 4+ 7
4 | 16k° 4+ 40k + 32k + 8  26k> + 48k*> + 32k + 8 4k° — 4k% — 16k — 8 2k + 20k% 4+ 24k + 8
5 | 16k% +34k% +26k+ 7 26k +68k% + 63k + 21 4k + 14k% +16k+ 7 2k + 2k 4+ k
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Proof. It follows immediately from the hypothesis that Ah” = AT. Applying a
standard [ inequality to this yields the result. a

Theorem 5.3 For allk >0 and r =0,1,....5, the four-dimensional skew-circulant

N

rule Q(4,6k + 1) specified in Table 1 has enhanced degree § = 6k + r.

This can be verified numerically for any individual value of k. So we do not
compromise the proof when, at one point we restrict k to exceed 2. There is no need
to treat r = 0 because Q(4, 6k) is the k-copy version of Q(4, 6), and so the theorem
is self-evident. And since Q(4, 12k + 4) is the 2-copy version of Q(4,6k + 2), the
case r = 2 need not be treated so long as the case r = 4 is treated. However, we do
not exploit this, and the proof below applies to all r.

Proof. We shall establish the theorem by showing that each nonzero element h of
cach dual lattice A+ satisfies ||h||; > 6.

The proof falls into two parts. In Lemma 5.4, we apply Lemma 5.2 to show that
when || A |[1> 5, the corresponding h has I-norm larger than or equal to 6k + r.
In Lemma 5.5, we simply record the result of computing || h ||; for the remaining
elements of A*. For each § there are 240 of these, corresponding to || A ||1< 4.

Theorem 5.3 is an immediate consequence of these two lemmas. a

Lemma 5.4 For allk >0 andr =0,1,....5, with A and § = 6k + 1 as specified in
Table 1, when both A\ € Ag and || X ||1> 5, it appears that ||A||1/||A]|1>0.

Proof. The elements of the skew-circulant matrix A are given in the lower part of
Table 11 and the elements of A are A/N. The right-hand side of the inequality in
Lemma 5.2 is o
where )

D:—gl0+6~l1—6~l2—6~l3 (19)

for all k£ > 2.
For fixed r, N is a quartic and D a cubic polynomial in k. All the coefficients
of these polynomials are nonnegative. Carrying out the calculation for each r =

N

0,1,...,5 in turn, we find that the coefficient of each power of & in (6& + r)D(r) is
less than the corresponding coefficient in 5N (r), and consequently

(6k + r)D(r) < 5N(r). (20)
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It follows that, when || A |[1> 5,
| A|i N/D>5N/D > 6k +r (21)
as required by the lemma. a

Lemma 5.5 For allk >0 and r =0,1,....5, with B andA(S = 6k + r as specified in
Table 1, for A € Ag and || A ||1< 4 the elements of h = AB satisfy || h ||1> 6.

Proof. We treat separately each value of r. For a fixed value of r, and for one of
the 240 instances corresponding to || A 1< 4 , we calculate hT = AT B and form
| h |]1. Since B is the skew-circulant matrix specified in Table 1, we find

| h |)\1[;0+)\2[;1+)\3[;2+A4133|

+ | = Aibs 4 Azbo + Ashi + Asby|
+ | = Aiba — Aabs + Asbo + Aaby]
_I_

| — Miby — Aaby — Asby + Aabol.

Here each element b; is the linear function of k appearing in the rth line of the upper
part of Table 1. We have to show that this expression of || h ||1, in terms of & is not
less than 6 = 6k + r.

In fact, we verified very few of these computations by hand. A computer program
was then constructed to carry out this calculation for all 240 assignments of A and
all six assignments of r. O

6 Abscissa Counts

We now briefly discuss the relative efficiency of these skew-circulant rules when
compared with existing rules.
In Table 2 we have listed various abscissa counts for § < 30. These are as follows:

e Nyp, a theoretical lower bound on the number of abscissas required by any

rule of this degree[CoS196]

e Nio, the lowest abscissa count of any K-optimal rule listed in [Coly01]
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Table 2: Four-dimensional abscissa counts.

The value of Ng( is not shown for
values of ¢ for which Nsp = N.

J Nug Nro Neo N
1 1 1 1
2 2 2 2
3 9 9 9 17
4 16 16 18 32
5 41 45 49
6 66 68 68
7 129 152 153
8 192 212 226
9 321 375 425
10 450 516 562 612
11 681 857 857
12 912 1064 1088
13 1289 1601 1601
14 1666 1958 2034
15 2241 2834 2873
16 2816 3312 3554 3616
17 3649 4628 4633
18 4482 5354 5508
19 5641 7081 7081
20 6300 8148 8402
21 8361 10552 10625
22 9922 11886 12546 12548
23 11969 15167 15217
24 14016 16812 17408
25 16641 20961
26 19266 23938
27 22569 28577
28 25872 32544
29 29961 38081
30 34050 42500
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e Nip, the abscissa count for the optimal skew-circulant rule
. N, the abscissa count for Q(4, 9), calculated from the expression in Table 1

The reader will notice that, on any particular line in the table, the entries are
in non-decreasing order. This follows principally because the populations for which
these are optimal rules are successive subsets.

Examination of this table shows that the optimal skew-circulant rule is also a
K-optimal rule in the cases 6 = 2,6,11,13, and 19. For some other odd values of 4,
N¢o is very close to Ngo. But for even values of 4, this difference is larger, up to 4
percent.

To obtain a visual impression of the relative efficiency of these rules, we have
used the recently introduced rho index p(@Q), which is defined as follows.

Definition 6.1 The rho index p(Q) of any s-dimensional cubature rule ¢ for [0,1)
of strict enhanced degree 6 and abscissa count N is
N sV

p(Q) (22)
This index was introduced in [CoLy01] and has been discussed at some length in
[LyCo00]. It appears that the value of this index for any m-copy of () is the same
as its value for (). And the value of the index cannot exceed 1.

A plot of rho indices of various optimal rules having § < 30 appears in Figure
1. The information required for each entry in this figure appears in Table 2. Nat-
urally Figure 1 and Table 2 are simply different ways of presenting the identical
information.

Some of the following observations about the sequence Q(4, d) are illustrated in
this figure. They are established by using elementary algebra based on the expres-
sions given in Table 1.

In this discussion, we shall abbreviate p(@(4, ) to p(9), and denote the limit of
p(@(4,5)) as 0 becomes infinite by pj,, = 27/34 &~ 0.7941.

Clearly Q(4, 6m) is the m-copy of Q(4, 6) and, for these m-copy rules, the com-
mon value of p(6m) is pym. Clearly, also, Q(4, 12k 4 4) is the 2-copy version of
Q(4, 6k + 2) for all integer k.

The largest value p,,.. of the rho index occurs when ¢ is 26 and again when &
18 52 prae = 0.7963, exceeding pji,, = 0.7941 by less than one-third of one percent.
The sequence p(6k + 2) is monotonically increasing for k& < 7. It is monotonically
decreasing thereafter, approaching pj, from above. The sequence p(6k + 4) has a

similar character, reaching the same maximum when & = 14.
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Figure 1: The rho index of some optimal four-dimensional rules.

O A (hypothetical) optimal trigonometric rule.
(This provides an upper bound on p(4,4).)

o A K-optimal rule [CoLy01].

* The sequence Q(4, J).

v An optimal skew-circulant rules, displayed only when
Q(4, d) is not itself an optimal skew-circulant rule.

However, p(0) < piim for all odd 4. For fixed r (=1,3, or 5) the sequence p(6k+r)
approaches the limit monotonically from below.

We may exploit some of this information to demonstrate the falsity of the con-

N

jecture that, for sufficiently high 4, the rule Q(4,d) might always be an optimal
skew-circulant rule.
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Table 3: Parameters for specification of Q(i’), §) for positive integer 4.

r b(3,6k + r) TR &l a(3,6k +r)

0|k 2k 3k 2k 19k2 7k? K2 11k2

1|k 2k 3k+1 | 2k+1 | 19K2+7k+1 7k? + 2k (k—l) 11k2 + 6k + 1

2 | kE+1 2k 3k+1 | 2k+1 | 19K2+8k+1 Tk + 4k + 1 (k2—4k—1) 11k% + 8k + 1
3|k 2k+1  3k+2 | 2k+1 | 19K2+22k+7 | TE2+Tk+2  —(k+1)? 11k% 4+ 13k + 4
4 | k+1 2k+1 3k+2 | 2k+2 | 192 +23k+7 | TR24+9%+3 —(k2-k-1) 11k%2 + 15k +5
5 | k+1 2k+1 3k+3 | 2k+3 | 19k24+30k+12 | 72 +11k+4 —(k2—2k—2) 11k2+21k+10

Theorem 6.2 When § is of the form 18k+6 with k > 4 or when d is of the form
18k+12 with k > 7, the skew-circulant rule QQ(4,0) is not an optimal skew-circulant
rule.

Proof. The three-copy version of Q(4, 6k+2) is a skew-circulant rule of degree 18k+
6. When k > 4, its tho index p(6k + 2) exceeds the rho index pjp, of Q(4, 18k 4 6).
Thus Q(4, 18k 4 6) is not optimal. The other result in the theorem is proved in the
same way. O

7 Three-Dimensional Theory and Results

In the preceding two sections we have described at some length some of our results
in our search for optimal four-dimensional skew-circulant lattice rules. We have also
carried out a corresponding search in three dimensions for optimal rules of strict
enhanced degree ¢ up to enhanced degree 6 = 60. The results are less interesting.
We outline some of them here.

As in the four-dimensional case, the search provided a sequence of optimal skew-
circulant rules. We have identified an infinite sequence of skew-circulant rules
Q(?),(S), which are specified in Table 3. For all § < 60, with eleven exceptions
(namely, § = 5,7,8,10,11,13,14,17,20,26, and 32) it appears that Q(i’),(g) is an

optimal skew-circulant rule of strict enhanced degree §.

In three dimensions, as in all dimensions, optimal rules are known for enhanced
degrees 6 = 1,2,3,4. In three dimensions only, an optimal rule is also known for § =
6. This is based on Minkowski’s celebrated critical lattice, stemming from classical
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lattice theory [Minll1], which provides a lattice and lattice rule of enhanced degree
d = 6. In our context, this theory also provides an upper bound p¢r, = 18/19 on
the rho index of any three-dimensional lattice rule. Since all m-copies Q(i’), 6m) of
this rule share the same rho index, these copies are all optimal lattice rules.

In [CoLy01] a list of three-dimensional K-optimal lattices appears for ¢ € [1, 30].

N

For 6 = 6k these are the optimal lattice rules ()(3,6) just mentioned. For § =
6k +3 < 30, these coincide with one of the optimal skew-circulant rules Q(i’), 6k+3).
For § = 6k + r < 30 with r = 1,2,4,5, however, the optimal skew-circulant rules are
inferior to known K-optimal rules.

One disconcerting feature of these results is that, for & > 2, our rule Q(i’), 6k +5)
actually uses more function values than does Q(i’), 6k + 6). This is possible because
definitions and searches are restricted to rules of strict enhanced degree §; that is,

they exclude any of degree exceeding 4.

Definition 7.1 Let ¢ = 6k+r, where r € [0,5]. Define 6(3,5) as indicated in Table
3. Then Q) s the lattice rule Q(A), where A is the dual of the lattice A* generated
by B =C(b).

The table includes a specification of other quantities required to construct the rule
directly. These are defined in the proof of the following theorem.

Theorem 7.2 Let a,b,c be nonnegative integers such that b* > ac. Let B =
C(a,b,c) and A= (B™HT. Then || A= 1/(a —b+¢).

Proof. One finds by simple manipulation that
det B=a>—b"+ ¢ +3abc=(a—b+c)(a’ + b+ +ab+bc—ca).  (23)
It is simple to verify that A = (B~1)T = C(a)/ det B with
a=(a®+be,—(c* + ab),b* — ca). (24)

Up to this point a,b, and ¢ can be general. When «, b, and ¢ are nonnegative and
b* > ac, we find

| A= (a2—|—62+02—|—ab—|—bc—ca)/detB, (25)
and in view of (23) we find || A|1=1/(a — b+ ¢). O

In Table 3, we list, for each § = 6k + r, the quantities b, NV, | &1, and a as
functions of k. These may be obtained from the corresponding quantities in the

proof of the theorem by replacing («, b, ¢) by b.
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With the exception of enhanced degrees § = 5,7,8,11,13, and 17 these are
optimal skew-circulant rules of strict degree 6 for § €[1,60]. We have no proof that
these are optimal for all 4 > 61. And we have no counterexamples to refute such
a conjecture. As mentioned above however, we have established that Q(i’), d) is of
enhanced degree § for all 4.

Theorem 7.3 Forallk > 0 andr =0,1,....5, the three-dimensional skew-circulant

N

rule Q(3,6k + 1) specified in Table 3 has enhanced degree § = 6k + r.

The proof is along the same lines as the proof of Theorem 5.3 but is much simpler.
It appears that in the three-dimensional version of Lemma 5.4 we need to restrict A
to || A |[1> 3. The number of simple computations to establish the three-dimensional
version of Lemma 5.5 becomes far fewer, in part because of the reduced dimension
and in part because of the lower limit on || A ||;.

8 Concluding Remarks

The results in this paper contribute to the theory of multidimensional numerical
quadrature rules for [0, 1)® having specified trigonometric degree. For s > 4, optimal
rules are known only for § < 4. All available rules of higher degree are copies
of these or have been discovered empirically, nearly always by means of intensive
computer-based searches. A reduction of the population that is searched produces
rules optimal only within the smaller population but at a lower cost. Thus, while we
would prefer to find optimal rules, we have used computer searches to find optimal
lattice rules, K-optimal rules, and, as described in this paper, optimal skew-circulant
rules. Each population considered is a subset of the previous population. Each of
the final three requires only a finite search. Naturally each search is shorter than
the corresponding previous one and yields less efficient results.

The search over skew-circulant rules (described in Section 4) is intrinsically much
shorter than the more thoroughgoing searches mentioned above. It may be much
more efficient, however, because of the underlying situation with respect to duplicate
copies and symmetric copies. In the absence of special measures, a search might ex-
amine the same rule (specified by different generator matrices) several times. More-
over, the search might treat many members of the same equivalence class. Such a
class may contain up to 192 distinct rules, all geometrically equivalent. The success
or failure of a long search depends critically on the extent to which the search is
capable of avoiding duplicate copies and symmetric copies of rules that have already
been examined. In this respect, the remarks at the end of Section 4 indicate that
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our four-dimensional search treats each rule only once. And, by limited inspection,
we have noticed that in general the four-dimensional search treats only two distinct
members of each equivalence class.

In the corresponding search for K-optimal rules, it is possible that the identical
rule be treated up to eight or sixteen times, and all 192 symmetric copies might
also be treated with the same abandon. In practice, empirical evidence suggests an
overall redundancy exceeding 99%.(See Section 5 of [CoLy01].)

In an odd-dimensional context, one may show that every skew-circulant rule has
a symmetrically equivalent circulant rule and vice versa. (This may be established
by using a trivial variant of Theorem 3.3.) Hence an optimal odd-dimensional skew-
circulant rule has the same abscissa count as a corresponding optimal circulant rule.

But in four (and in other even) dimensions the equivalence set of a circulant
rule may or may not contain skew-circulant rules. Examination of four-dimensional
results in the present paper and in [CoLy01] reveals the following situation. For é =
1, 5, and 9, the optimal circulant rule coincides with a K-optimal rule and is more
economic than any skew-circulant rule of the same degree. For § = 1,2,6,11,13
and 19, the optimal skew-circulant rule coincides with a K-optimal rule. For all
d € [2,47], with the exceptions of 5 and 9, the optimal skew-circulant rule is more
economic than the corresponding optimal circulant rule.

Besides describing a somewhat complex situation with respect to optimal rules
for large and for small values of ¢, the main result of this work (illustrated in Figure
1) may be the specification of an infinite sequence of rules, one for each value of 4. For
d > 10 all of these have rho indices between 0.70 and 0.80, the limit exceeding 0.79.
(The highest four-dimensional rho index known to us at this time is 0.825.) While
some of these rules may be useful in practice, we feel that the main contribution of
this paper is theoretical, establishing the existence of such a sequence.
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